Special Topics in Cryptography

Mohammad Mahmoody

Reminder

- Problem set 1 reminder due this Wed
- Need to solve problem 2.6 part b (from Katz-Lindell) book, as well.

Last time

- Defining encryption formally
- Information theoretic (perfect) vs. computational secrecy
- Limitation of perfect secrecy (and even its relaxations)

Today

- Secrecy based on (unproven) computational assumptions
- Pseudorandom generators (and functions)

Computational Privacy/Security A scheme is (t, ε) -secure if every adversary running for time at

most t succeeds in breaking the scheme with probability at most ε .

• What it means to "break" depends on the exact security def.

• Ideal: t > "feasible computation" and $\varepsilon_{0} <$ "negligible probability" For all c, $\varepsilon(n) \ll \frac{1}{n^c}$, if n is large enough. • Example: $t = 2^{100}$ $\varepsilon = 2^{-100}$ (age of universe $\approx 2^{80}$ seconds)

ONP-Complete /hard; Boolean SAT Problem. Examples Constant. find a Tour that goes to all nodes using minimal distance total. distance von-time: time l'input size 100 quick Weighted graph inpt Fearible Poly-time. Conjecture: I poly-time alg for TSP vuns in time nO(1) run-Time nxn! Cary. Factoring Large Prime numbers. (into primer)

"Efficient" time and "Negligible" probability...

• Efficient: polynomial time over input length

 $t(n) \neq poly(n)$ = c, a t(n) $\leq n^{c}$ • Negligible: smaller than any inverse polynomial (over input length)

E(n) K 1 if in is large enough.

Formal definitions of security

The adversarial indistinguishability experiment $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$:

- 1. The adversary \mathcal{A} is given input 1^n , and outputs a pair of messages m_0, m_1 of the same length.
- 2. A random key k is generated by running $Gen(1^n)$, and a random bit $b \leftarrow \{0, 1\}$ is chosen. The ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to \mathcal{A} .
- 3. A outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. If $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1$, we say that \mathcal{A} succeeded.

DEFINITION 3.9 A private key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions in the presence of an eavesdropper *if for all* probabilistic polynomial-time adversaries \mathcal{A} there exists a negligible function negl such that

$$\Pr\left[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1\right] \le \frac{1}{2} + \mathsf{negl}(n), \qquad \qquad \overleftarrow{\mathsf{C}}$$

where the probability is taken over the random coins used by \mathcal{A} , as well as the random coins used in the experiment (for choosing the key, the random bit b, and any random coins used in the encryption process).

Two main issues:

• How to realize this definition?

• Is this the best definition addressing all issues? (No, it is still weak, but we will get back to this)

Pseudo-randomness (random in eyes of computationally bounded)

Pseudo-random generator (PRG)

• A magical tool that let us still do "one-time-pad" using short keys! Word 1 Word 2 h_{j} 5

Formal definition of PRGs efficient function $g(\gamma) \rightarrow 2011^{2.1x1}$ all possible out in length = n Chall. 3 $|x| = \frac{n}{2}$ b= 5 20,1} for all poly-time adv A: there is a negligible func E(.) y₄-U, such that $P_{0}[Win [AJv]] \leq \frac{1}{2} + \varepsilon(n)$ Slugg 1017 10/17 Win:= b=b

|m| = N - bi+Using PRGs \rightarrow encrypting one long message with Compared ken the existence - bit PRG 0 vn-bit (X) = N-6i+ K,m): 9 m Droal : private-key Der (K, K) Construct un ind. -secure = 9(k)0m encryption Enc, Dec, (Gen (·) outputs $|k| = \frac{n}{2}$ work on messages of length n. $E_{n(4,m)sm}$ Thm: a secure PRG 1S η is a secure SKE. Completem

Word O

$$M_{0}M_{A}DV$$
 $M_{0}M_{A}DV$
 $M_{0}M_{A}DV$
 $M_{0}M_{A}DV$
 $M_{0}M_{A}DV$
 $M_{0}M_{0}DU_{n}$
 $M_{0}DU_{n}$
 $P_{1}\left[out=1\right]=P_{0}$
 $P_{1}\left[out=1\right]=P_{0}$
 $P_{1}\left[out=1\right]=P_{0}$
 $P_{1}\left[out=1\right]=P_{0}$
 $P_{1}\left[A_{2}=output 1 \text{ on } g(U_{n})\right]P_{0}$